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The design and modular synthesis of three ternary co-crystals

with desired connectivity, assembled using tailor-made pyridyl/

benzimidazol-1-yl-based supramolecular reagents, are

described.

Many elegant studies have shown that extended supramolecular

architectures can be synthesized with the aid of complementary

intermolecular interactions.1 When such assemblies are constructed

from neutral molecular building blocks they are typically

homomeric, which is consistent with the observation that ‘‘most

crystals are built from identical (or enantiomeric) copies of the same

molecule’’.2 Despite an abundance of papers dealing with design

and assembly of organic extended networks with desirable

connectivities and shapes, it remains exceedingly difficult to bring

more than two different molecular species into one crystalline

lattice in a predictable manner, without making or breaking

covalent bonds.3–5 In fact, our recent work with isonicotinamide

remains the only reported successful strategy for the reliable

construction of ternary supermolecules.6–11 In a typical reaction,

isonicotinamide is allowed to react with two carboxylic acids

resulting in ternary supermolecules with two primary supramole-

cular synthons;12 (1) the heteromeric carboxylic acid…pyridine

hydrogen bond and (2) the heteromeric amide…acid hydrogen

bond. The supramolecular targets are assembled using a synthetic

strategy based upon a hierarchical view of intermolecular forces;

the stronger acid (as determined by pKa values) interacts

preferentially with the best hydrogen-bond acceptor (the pyridine

nitrogen atom), and the weaker acid binds to the amide moiety.13

Despite its success, isonicotinamide is not an ideal supramole-

cular reagent. First, it is capable of forming self-complementary

amide…amide and amide…pyridine hydrogen bonds which makes

it inherently difficult to combine it with molecules that lack

moieties that can compete successfully with the hydrogen-bonding

capabilities of the amide functionality. Second, since the two

binding sites on isonicotinamide are attached to the same

delocalized backbone, it is not possible to tune the electronics of

the two sites independently, which reduces versatility.

In order to bring supramolecular synthesis in the solid state

(crystal engineering) to a new level of complexity we are now

developing supramolecular reagents (SRs) that can be refined in

such a way that they offer more opportunities for structural

selectivity and specificity.

This paper describes the rationale behind, and synthesis of, a

family of pyridyl/benzimidazol-1-yl-based SRs, and the subsequent

modular assembly of ternary co-crystals (1:1:1). Our approach is

based upon hydrogen-bond interactions in the context of the

best-donor/best-acceptor, second-best donor/second-best acceptor

concept.6,14,15 The SRs in this study are built around asymmetric

bis-heterocycles where two binding sites (hydrogen-bond acceptor

sites) are linked by a methylene bridge in order to provide

increased solubility in a range of solvents. The binding sites have

significantly different basicities,16 which means that their abilities

to accept hydrogen bonds differ. They also lack strong hydrogen-

bond donors and, consequently, any self-complementary inter-

molecular interaction will be weak and less likely to disrupt the

desired heteromeric interactions, Scheme 1.

Even though pKa/pKb values do not provide direct measures of

hydrogen-bond strength, hydrogen-bond abilities and free energies

of complexation have been correlated with pKa values, and within

closely related classes of compounds such comparisons frequently

yield correct qualitative results.17 Finally, the basicity of each

heterocycle can be independently altered through suitable covalent

substituents on each ring, which thereby provides an effective

handle for fine-tuning differences in intermolecular reactivity

between the two binding sites. The latter is highly significant

as it creates a supramolecular reagent with the potential for a high

degree of versatility and transferability. Ditopic bis-benzimidazoles/

bis-imidazoles are also known to form co-crystals with a variety of

carboxylic acids.18

The ability of these supramolecular reagents to form ternary

supermolecules with predictable connectivity was put to the test by

allowing each SR to react with pairs of carboxylic acids with

different pKa values19 in a 1:1:1 ratio.20

The crystal structure of 1 consists of two crystallographically

inequivalent sets of ternary supermolecules with identical con-

nectivity, Fig. 1.21

The primary synthons in this structure are (a) the O–H…N

hydrogen bonds from the stronger acid (3,5-dinitrobenzoic acid) to

the most basic nitrogen atom located on the benzimidazol-1-yl

ring, O31…N13, 2.5762(17) s, and O71…N53, 2.5455(18) s,

and (b) the O–H…N hydrogen bonds from the weaker acid

(4-nitrobenzoic acid) to the less basic nitrogen atom located on the

pyridyl moiety, O41…N21, 2.6081(18) s and O81…N61,

2.6057(19) s.

{ Electronic supplementary information (ESI) available: synthesis of
supramolecular reagents and ternary co-crystals and CIF files (CCDC
259793–259795). See http://www.rsc.org/suppdata/cc/b5/b503718b/
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The crystal structure determination of 2 also reveals a ternary

1:1:1 supermolecule with the same connectivity as found in 1,

Fig. 2.22

The primary synthons comprise (a) an O–H…N hydrogen bond

between the stronger acid, 3,5-dinitrobenzoic acid, and the most

basic heterocyclic moiety, O47…N13, 2.652(3) s, and (b) another

O–H…N interaction between the weaker acid, 3-N,N-

dimethylaminobenzoic acid, and the second-best hydrogen-bond

acceptor, the pyridyl moiety, O37…N21, 2.665(3) s.

The crystal structure of 3 contains the desired 1:1:1 super-

molecule with the expected connectivity, Fig. 3.23

The best acceptor, the benzimidazol-1-yl moiety, forms an

O–H…N hydrogen bond with the best donor, the stronger acid,

O47…N13, 2.553(3) s. The second-best acceptor, the pyridyl

moiety, binds to the weaker acid via an O–H…N hydrogen bond,

O37…N21, 2.641(3) s.

All three structures, 1–3, contain ternary supermolecules

constructed through the deliberate use of directional intermole-

cular synthetic operations.24 Each SR has two binding sites that

differ primarily in their basicity but neither site is otherwise biased

or predisposed towards interacting preferentially with either of the

two competing carboxylic acids. The differences in basicity are

translated into supramolecular reactivity and selectivity that

subsequently carry over into the solid state, which demonstrates

that supramolecular assembly can be controlled by fine-tuning

individual binding sites. This raises the possibility that a solution to

the problem of making non-covalent one-pot synthesis ‘‘sequen-

tial’’ may be to devise modular assembly processes based upon a

hierarchy of intermolecular interactions derived from molecular

properties and structural trends.

It should be emphasized that ternary co-crystals are extremely

rare and that the supramolecular reagents presented in this study

contribute to high-yielding reactions; in a supramolecular sense,

this translates to a high frequency of occurrence of a particular

intermolecular binding pattern in the presence of potentially

disruptive intermolecular interactions.

SRs of the type presented herein will at some point undoubtedly

generate results that do not acquiesce to the proposed assembly

principles. However, through covalent synthesis we have unlimited

opportunities for modulating the electronic and geometric details

of each binding site on a supramolecular reagent such that a

variety of chemical functionalities can be targeted for binding. In

this way we can build a team of SRs where each member is capable

of affecting the assembly of new supermolecules with a high degree

of specificity and reliability, thereby clearing a path towards

practical and transferable guidelines for versatile supramolecular

synthesis. We are currently probing the limits and limitations of

this hierarchical approach to non-covalent synthesis by examining

the structural reactivity of libraries of supramolecular reagents

containing multiple binding sites with easily adjustable differences

in hydrogen-bond donating/accepting capabilities.
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and A. M. Beatty, Aust. J. Chem., 2001, 54, 409; J.-M. Lehn,
Supramolecular Chemistry, VCH, Weinheim, 1995; D. L. Caulder and
K. N. Raymond, Acc. Chem. Res., 1999, 32, 975; D. N. Reinhoudt and
M. Crego-Calama, Science, 2002, 295, 2403; J.-M. Lehn, Science, 2002,
295, 2400; D. Braga, G. Desiraju, J. S. Miller, A. G. Orpen and
S. L. Price, CrystEngComm, 2002, 4, 500; D. Braga, L. Maini, M. Polito
and F. Grepioni, Struct. Bond., 2004, 111, 1; G. Lewis and A. G. Orpen,
Chem. Commun., 1998, 1873; L. J. Prins, D. N. Reinhoudt and
P. Timmerman, Angew. Chem. Int. Ed., 2001, 40, 2382; S. C. Zimmerman
and P. S. Corbin, Struct. Bond., 2000, 96, 63.

Fig. 1 One of two ternary supermolecules in the crystal structure of 1

(both have the same connectivity). The best hydrogen-bond donor binds

to the best hydrogen-bond acceptor and the second-best donor binds to

the second-best acceptor.

Fig. 2 The ternary supermolecule in the crystal structure of 2. The best

hydrogen-bond donor binds to the best hydrogen-bond acceptor and the

second-best donor binds to the second-best acceptor.

Fig. 3 The ternary supermolecule in the crystal structure of 3. The best
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